ARKEMA

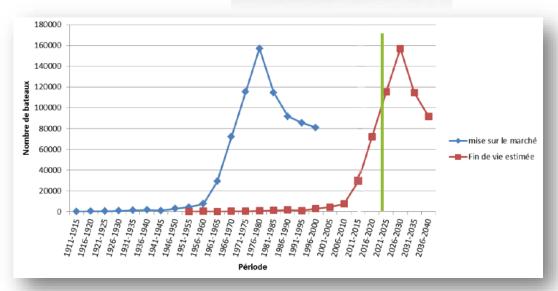
LE RECYCLAGE DES COMPOSITES

Un nouveau cap pour la course au large

D^r Pierre GERARD, Recycling program manager pierre.gerard@arkema.com

Booming of wastes from thermoset composites

✓ Pleasure boats


Booming economy sector (+ 12 000 registration each year^[1])

France: international leader of sailboats and multihull recreational craft

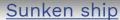
Pleasure boats which are out of use (BPHU)

- Composite materials based on conventional thermoset resins derived from petroleum oil (UPR, VE, Epoxy, ...) reinforced by continuous glass fibers (or carbon fibers)
- More than 13 000 pleasure boats are due to reach end of life each year^[2]
- Estimate of the average service life between 30 and 45 years
- 2015 : ~ 40% of recreational boats are more than 30 years^[3]
- End of life follows the trend of production

[2] ADEME. Étude préalable à la mise en place de la filière de collecte et de traitement des navires de plaisance ou de sport hors d'usage sous la responsabilité des producteurs (REP). 2016

[3] Jaouen B. EcoNav: Quelle politique territoriale pour une gestion viable et durable des bateaux en fin de vie ? 2013

^[1] Direction générale des infrastructures des transports et de la mer. La plaisance en chiffres 2017/2018.


Booming of wastes from thermoset composites

- End-of-life scenarios
- Lack of legislation
- Limited recyclability
- Lack of technology
- But fast growing sector

Abandoned ship

Pleasure boats which are out of use (BPHU)

Low-impact alternative raw materials

Resin design for recycling **ELIUM**®

Driven by manufacturing wastes and end-of-life

Extended Producer Responsability (REP 2019) Association for Eco-responsible Boating (APER)

Recovery

Re-use Ease of Recycling (mechanical and chemical recycling)

Definitive ban of landfill

ELIUM the recyclable liquid thermoplastic resin

ARKEMA

A unique solution for manufacturing composite parts using the same methods as those used for standard liquid resin parts, and include the major advantages of recyclability

ELIUM®

Liquid

The resin is a liquid polymer diluted in a reactive monomer blend with processing additives

Reactive

Two components are needed: Resin + initiator The polymerization can be adjusted to fulfill manufacturing process requirements (T°, UV, time)

Thermoplastic

After polymerization, the matrix is a high strength, high toughness, durable and lightweight polymers. Final parts can be thermoformed, overmolded or welded

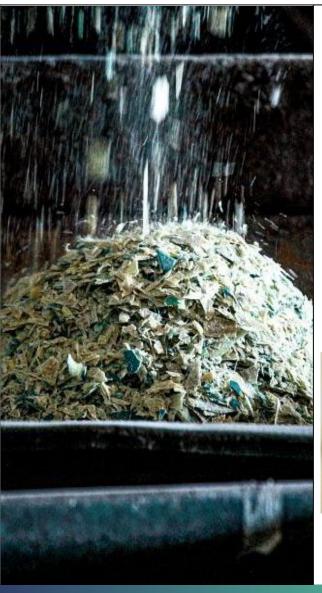
Recyclable

The obtained high molecular weight thermoplastic reinforced polymer is fully recyclable

Elium® resin is styrene free, BPA free and Cobalt salt free

Recycling PIR: waste management, PCR: end of life

CHEMICAL


RECYCLING

RE:build

- Unique property of Elium® resins to be de-polymerized by a thermolysis process
- Separation of resin and fiber and collection of recycled monomer
- Rebuild of recycled Elium[®] resin in a closed loop recycling process (better LCA profile, cradle to gate)

Recycled ELIUM®

MECHANICAL

RECYCLING

RE:use

- Regrind thermoplastic composite particles
- Compounding step
- Reuse in thermoplastic processes

Door handle: recycled compound of 50% r-ABS and 50% composite CF of GF/Elium®

Partnership with

Elium-based composite mold for link arm: single use!

Chemical Recycling

Recycled Elium (95% content): fairing & roof

Ocean 50 2021 (Recycled Elium)

Mini 6.50 (full carbon Elium)

4th Mini transat in 2025

2017

The use of 1 kg of Elium® resin allows the reduce by 4,6 kg the CO2 emissions of the full like cycle of the Class 40 (craddle-to-grave)

Class 40 (full Elium)

2022

2025- ...

- 1.4 kgCO₂eq

8,0 6.5 ± 2.0 5.4 ± 1.6 5.1 ± 1.5 6,0 1,71 - 1.1 kgCO_eq 0,29 4,0 4,29 2,0 -0.59 Ероху Elium, mechanical recycling Elium, thermal recycling ■ Production of raw materials and consumables
■ Packaging (raw materials & consumables)

Freight (raw materials & consumables)

■ End-of-Life

Figure 1: Cradle-to-grave carbon footprint of boat hull, in kgCO₂eq/kg of composites

4,29

-0.85

■ Production of the boat hull

BENETEAU & ARKEMA Roadmap

Firt 44e electric propulsion and more sustainable materials (r-PET foam, Iroko and ELIUM®)

2023

Cheviré's plant, dedicated for ELIUM® boat production ICNN certification on going

Sun Fast 30 OD

The Arch Mini 6.50

Introduction of flax

natural fibers

BV certification

BOAT

Boat Builder Award for the best Environmental improvement in manufacturing process

2024

Oceanis Yacht 60 St Gilles plant, work environment adapted to Elium®

Recycling Proof of Concept in Nantes pilot site (Veolia /Composites Recycling)

2022

2021

Mechanical properties and processability assessment

Recycling PIR: waste management, PCR: end of life

→ PIR Post-industrial wastes (manufacturing wastes from

VARI process)

- Consumables (vacuum foil, peel-ply, release film, infusion net, tubes, ...) fully thermoplastic (PE/PP, PA) all "contaminated" with Elium® resin (average ~ 50wt%)
- Elium® resin +
 (Methacrylate) adhesive +
 dust
- Glass fiber (dry)
- Cut offs (composite)
- Learnings from wind

ZEBRA PROJECT Zero wastE Blade ReseArch → PCR Post-consumer wastes

(end-of-life)

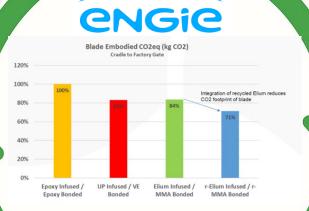
- Extended Producer Responsibility "Pleasure boat"
- Materials involved:
- Composites (GF/CF Elium®)
- (Methacrylate) adhesives
- (Balsa wood) / PET foam core
- GC/paints

ZEBRA PROJECT Zero waste Blade ReseArch

Recycling

ELIUM® blades Chemical

Recycled ELIUM®



30% reduction in CO₂eq. emissions per blade

Mechanical recycling

THERMAL RESHAPING FOR REUSE OF ELIUM® COMPOSITES

- Thermoforming thermoplastic spar cap (CSM & NREL)
- From blade to post (TU Delft)
- Thermal reshaping (Edinburgh Univ.)

HOT COMPRESSION OF GROUND BLADE

THERMOSAIC process by

- Thermo-mechanical process to make composite panels
- Fully thermo-formable by thermo-stamping process

COMPOUNDING + INJECTION MOLDING

- Compounding with thermoplastic such as PMMA, ABS
- Compound 60% ABS + 40% Elium[®] composite The resultant material is then transformed in pellets
- Pellets are processed by standard injection or 3D printing (LSAM for molds)

Fig. 10. A prototypical skateboard fabricated in part by thermoforming an Elium/glass

Chemical recycling by thermolysis

- → Recycled Elium® resin by depolymerization (up to 92% of recycled content)
- → The second ZEBRA blade is a world-first in using <u>recycled Elium® resin</u> in the manufacture of a shear web, which is a structurally important component of the blade
- → It demonstrates the closed loop for circular economy

Goal of Sustainable Development

GWP Impact (cradle to gate) kg CO2 / kg Elium®

Reclaimed fibers after chemical recycling

\rightarrow Glass Fibers

- **Re-melting –** thermal recycling unit for waste glass fibers
- After processing (shredder, burning chamber and milling), the recycled glass powder is free of organic particles and refed as raw material into the glass production process onsite (achieving a closed production loop)
 - Glass fiber textiles (replacement of existing non-recycled products)

CHOMARAT

\rightarrow Carbon Fibers

- Recycled and sorted CF (rCF mat)
- Thermoplastic compounding

rCF reinforced Elium thermoplastic automotive door panel prototype (Recotrans project – courtesy of Gestamp)

Tape technology (highly aligned discontinuous fiber composites)

A Leading Industrial Alliance for Next-Generation Circular Marine Construction

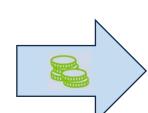
Closing the Loop: Marine Industry Model

Chemical recycling by thermolysis: partnership with

→ A promising and circular business model

Waste collection

Thermolysis & Post-treatment

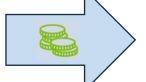

Reclaimed outputs

New composites

CR collects recycling fees

CR sells reclaimed outputs

PIR: manufacturing wastes



First mobile containerized unit (2T/d capacity) has been delivered by Swedish supplier FiberLoop in Dec. 2024 in Britany (Veolia's site)

R-Glass Fibers

ARKEMA

Recycled

Elium®: Powering the Future of Sustainable Sailing-Join the Circular Revolution

✓ The adoption of Arkema's Elium® resin in the nautical industry and offshore racing represents a major step forward in sustainable boatbuilding.

✓ Thanks to its unique thermoplastic properties, Elium® enables the production of highperformance, lightweight, and durable composite parts—while also allowing for true

closed-loop recycling at end-of-life.

✓ This innovation supports the transition to a circular economy for the future of sustainable yachting and ocean racing, reducing environmental impact and opening new opportunities for ecodesign and resource efficiency.

